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Abstract-The antiplane strain problem for bonded dissimilar half planes of general anisotropic
material containing an inclined crack terminating at the bimaterial interface is considered. The
surfaces of the crack can be subjected to traction-traction, traction--displacement or displacement­
displacement boundary conditions. The dependence of the order of the stress singularity on the
inclined angle and material constants is studied. If the effective crack angle and the effective material
constant are introduced for the anisotropic case, then the characteristic equation which determines
the order of the stress singularity has the same functional form as the isotropic case. Explicit solutions
for the order of stress singularity are obtained for some special cases. It is found that the order of
the stress singularity is always real for all the cases studied in this paper. This is a quite different
character from the in-plane case in which the complex type of stress singularity might exist. The
angular distribution of stresses near the crack tip and the exact fuIl field stress solutions are also
investigated.

I. INTRODUCTION

Problems related to stress singularities have received much attention, especially if
cracked geometries are included. The appearance of flaws or cracks on the bond between
the two materials could reduce the strength of the structure significantly and Williams
(1959) was the first to consider this problem. He found that the stresses are inversely
proportional to the square root of the radial distance from the crack tip and possess a sharp
oscillatory character near the crack tip. This problem was further addressed by Erdogan
(1963), England (1965), Erdogan (1965) and Rice and Sih (1965). Tranter (1948) used the
Mellin transform in conjunction with the Airy stress function representation of plane
elasticity to solve the isotropic wedge problem. Bogy (197Ia) used the Mellin transform to
treat the problem of two materially dissimilar isotropic elastic wedges of arbitrary angles
that are bonded together along a common edge. A number of other workers have studied
similar problems, see Dempsey and Sinclair (1981) and Erdogan and Gupta (1972), for
example.

Extensions to anisotropic materials have been made by Sih et af. (1965), Gotoh (1967)
and Willis (1971). Following the approach of Stroh (1958, 1962), Ting and Chou (1981)
and Ting (1986) studied the stress distribution near the composite wedge of anisotropic
materials. Bogy (1972), Kuo and Bogy (1974a, b) employed a complex function rep­
resentation of the solution (Green and Zema, 1954) in conjunction with a generalized
Mellin transform to analyze stress singularities in an anisotropic wedge. From the recent
study, Ma and Hour (1989) found that the order of stress singularity is always real for
general anisotropic bimaterial wedges of antiplane problem. Several studies in this area
have been made in the last decade, see Clements (1971), Delale and Erdogan (1979), Hoenig
(1982) and Wang and Choi (l982a, b).

The strength of composite materials is influenced by the orientation of existing cracks
with respect to the bimaterial interface. When a crack encounters an interface with a second
material, it may be penetrated through the interface, it may be reflected back, or interfacial
debonding may occur. Under some situations an interface can provide a mechanism for
crack arrest. In this paper, antiplane strain problems of general anisotropic dissimilar
material containing an inclined crack terminating at the interface are considered. The
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Fig. I. Configuration of crack terminating at the interface.

problem under consideration is the generalization of that considered by Bassani and Erdo­
gan (1979) in which only the case of isotropic dissimilar material under traction boundary
condition was studied. Here the. problem for anisotropic material of traction (or dis­
placement) prescribed on both crack faces, and the problem of traction prescribed on one
face with displacement prescribed on the other are solved. The correspondent in-plane
problem of isotropic material subjected to traction-traction boundary condition was exam­
ined by Bogy (1971b). The problem ofa straight crack which is perpendicularly terminating
at and passing through a bimaterial interface of isotropic and orthotropic half planes was
studied by Kasano et al. (1986, 1987). The problem will be solved by application of Mellin
transform as done by Ma and Hour (1989). We focus our attention especially on the
dependence of the order of the stress singularity on the inclined angle, material constants
and boundary conditions. The angular dependence of the stress field near the crack tip and
the full field stresses distribution are also analyzed. Unlike the existence of the oscillatory
character for the singular behavior of the in-plane problem, we found that the order of
stress singularity is real for all the cases studied in the antiplane strain problem subjected to
different boundary conditions (i.e. traction-traction, displacement-displacement, traction­
displacement). Furthermore, if "effective angle" and "effective material constant" are
introduced, then the order of the singularity for the general anisotropic material can be
obtained easily from the solution of the isotropic case.

2. GENERAL SOLUTION IN MELLIN TRANSFORM DOMAIN

Let P, p* and r denote the open two-dimensional regions occupied by the cross­
sections of a half space and its adjacent half space split by a plane crack that subtends an
angle a (a ~ 1t) with the interface as shown in Fig. 1. Let J1. and J1.* stand for the shear
moduli of the two different media in regions 0 ~ 0 ~ 1t and 1t ~ 0 ~ 2n. Two dissimilar
elastic homogeneous materials are assumed to be perfectly bonded along the interface. For
the antiplane shear deformation, the only nonvanishing displacement component is along
the z-axis, w(x, y). In the absence of body forces, the equilibrium equation for w is given
by the Laplace equation

(1)

Using the relations between the shear stress and displacement, the nonvanishing stresses
are

(2)

(3)

In addition, we shall require the stress fields to satisfy the regularity conditions,
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'tm't/lz == O(r- 1+6) as r -. 00 for ~ > o.

Let the Mellin transform of a function fer) be denoted by](s)

](s) == M{f; s} == 1'" f(r)r'- 1 dr,
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(4)

(S)

where s is a complex transform parameter. The Mellin transforms of w(r, 9), rt,rCr, 9),
rt/lz(r, 9) with respect to r are denoted by w(s, 9), i,z(s, 9) and t/lz(s, fJ). Thus

w(s, 9) == So'" w(r, fJ),s-1 dr,

t/lAs, fJ) == 1'>:> 't/lz(r, 9)r' dr.

(6)

(7)

(8)

By use of the inversion theorem for the Mellin transform, the stress and displacement
components are given by

1 IP+ioo
w(r, fJ) == -2• w(s, 9)r-' ds,

ttl p-i'"

1 IP+i'"'t/lz(r,9) == -2. t9z(S, 8)r-'- [ ds.
ttl p-i'"

(9)

(to)

(11)

Because of condition (4), the path of integration in the complex line integrals
Re(s) == p in (9), (10) and (11) must lie within a common strip of regularity of their inte­
grands, the choice of p is taken to be

p == -e, 0 < 8 < (IRe(s[)I), (12)

where s\ denotes the location of the pole in the open strip -1 < Re(s) < 0 with the largest
real part and Re denotes the real part of the complex argument.

Applying the Mellin transform (6) to (I) yields an ordinary differential equation for
W, the general solution ofwhich is

w(s,9) == a(s) sin (s9) +b(s) cos (s8).

The solutions of the stress components in the transformed form appear as

i rz (s,8) == - J.lS[a(s) sin (s8) +b(s) cos (s8)],

i/lz(s,9) == J.lS[a(s) cos (s8) -b(s) sin (s9)].

(13)

(14)

(IS)



1390 c.-c. MA and B.-L. HOIJR

3. THE STRESS SINGULARITIES AT THE CRACK TIP

Case I. Traction-traction boundary condition
Perfect bonding along the interface is ensured by the stress and displacement continuity

conditions, and the traction boundary conditions on the crack faces are given as follows

,t=(r, -a) = t*(r), '9=(r,2n-a) = t'(r),

,tAr,O) = '6z(r, 0), w*(r,O) = w(r, 0),

'9=(r, n) = '6=(r, n), w'(r, n) = w(r, n). (16)

In (16), t*(r) and t'(r) represent the shearing tractions prescribed on the crack faces.
Substitution of (13)-(15) into the Mellin transform of (16) provides the following six
equations for the six unknown functions a*(s), b*(s), a'(s), b'(s), a(s), b(s);

)1*a*(s) cos (as) + )1*b*(s) sin (as) = i*(s)/s,

)1*a'(s) cos (s(2n-a»-)1*b'(s) sin (s(2n-a» = i'(s)/s,

)1*a*(s) - )1a(s) = 0,

b*(s) - b(s) = 0,

)1*a' cos (sn) - )1*b' sin (sn) -)1a cos (sn) +)1b sin (sn) = 0,

a' sin (sn) +b' cos (sn) - a sin (sn) - b cos (S1C) = 0, (17)

where i*(s) and i'(s) denote the Mellin transforms of t*(r) and t'(r) , respectively. The
solution of (17) together with (13)-(15) determine the exact solutions of stresses i:;(s, (J),
ilz(s, (J), i;z(s, (J), iez(s, (J) and i,As, (J), i 6z(s, (J) in the transformed form

i:;(s,9) = (I +2
R

)D {- [(RS3 +C 3)i*+RS(i'] sin s(J+ [(R 2S 4 -RC4 )i* +RCli'] cos s9},

(18)

(19)

i;z(s,9) = (I +~)D { -[RS2 i* + (- RS3 +<II)i'] sin s(J- [RC2 i* - (RC4 + 'I')i'] cos s9},

(20)

i~(s, 9) = 2 {[RS2 i* + (- RS3 + <II)i'] cos s9- [RC2i* - (RC4 + 'I')i'] sin s9}, (21)
(I+R)D
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in which R = Jl*jJl and

D(a, R;s) = sin sn[(I-R) cos (2et-n)s+(l +R) cos sn],

c, = cos as, SI = sin as,

C2 = cos (2n-a)s, S2 = sin (2n-et)s,

C3 = sin S1t cos (1t-a)s, S3 =cosS1tsin (ll-x)s,

C4 = cossn cos (1t-IX)S, S4 = sin sn sin (ll-(x)s,

«> = sin m(cos S'1t cos (XS+ R2 sin S1t sin Cts),

'P = sin sn(sin sn cos CtS- R2cos sn sin Cts).

1391

(24)

From (18) to (23), it is clear that i,z(s, 8), r9z(s, 8) etc., are meromorphic functions of
s for fixed 8 in -I < Re(s) < 0 whose poles can occur only at the zeros ofD(s) in the open
strip. We can now indicate the appropriate path of integration for the inversion integrals
in (10) and (II). We may then choose the path of integration for the inversion integrals to
lie within the common strip of regularity Re(sl) < P < 0 with SI denoting the zero of D(s)
with the largest real part in the strip.

If S I is a simple zero of D(s), then the type of singularity will be of the order
1 = Re(s I)+ 1. Evidently if s I is a complex zero, then the stress fields are oscillatory in the
limit r -+ O. If no zero ofD(s) occurs in -1 < Re(s) < 0, but dD(s)/ds = 0 at s = -1, then
it will have logarithm type singularity. Hence, determination of the location of the zeros of
the characteristic function D(s) in the strip - 1 < Re(s) < 0 is our principal task. It is
shown in the Appendix that the zeros of D(s) are always real for any combination of
material constants and crack inclined angle Ct, so that the possibility of the oscillatory
singular behavior is precluded.

We examine D(s) for various special cases to get explicit analytical results. When IX = 0
(or (X = x), the problem becomes that of two dissimilar materials with crack along their
common interface and the familiar square root singularity is obtained. Suppose that the
materials occupying p. and P are the same, that is R =- I, we also have the well-known
result of square root singularity. If the material in p. is infinitely rigid, i.e. R -+ 00, we have
l -+ 1. If the material in P is infinitely rigid, i.e. R -+ 0, we have

x
A. = 1- 2a for x/2 ~ IX ~ 1t.

For the case of a crack perpendicular to the interface (Ct ;: xj2), we have

). = 1- ~tan-I(~) for R;. 1,

A=~tan-I (~) for R < I.

For IX = n/4, we have

We now turn to the numerical computation of the zeros ofD(s) for general cases. The
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Fig. 2. Dependence of the order of stress singularity i. on l( and R(R :;;; I) for the traction-traction
boundary condition.

results of the numerical computations are given in Figs 2 and 3, which show the dependence
of the order of stress singularity A. on R = J1.* / J1. and 0:. When curves corresponding to
different values of i. overlap, i.e. when multiple roots occur in 0 < A. < 1, it is understood
that the larger value of A. is plotted which controlled the asymptotic stress as r --+ O. It shows
that the order of the stress singularity is symmetric with respect to 0( = 90°. The order of
stress singularity for R < I (J1.* < J1.) will be in the range 0 < ). < 0.5, which is smaller than
the case for R > 1 (0.5 < i. < 1). This indicates that the stress near the crack tip will be
more singular if the crack occurs in the region of large shear modulus material. The angular
dependence of stresses near the crack tip for 0: = 75" and R = 0.05, 0.1, 0.4 are plotted in
Fig. 4. The shear stress !8z is continuous on the bonded edge while !rz is discontinuous at
the interface.

The exact full field shear stresses of!rz and "8= are computed numerically for 0( = 30°,
45° and R = 2. The specific loading considered here is that of a uniform shear stress !8=
with unit magnitude applied from r = 0 to r = I on the crack faces. Thus, the load functions
on the boundary will be

t*(r) = H(l- r), t'(r) = - H(l- r),

where H is the Heaviside function. The results of the computations of stresses along the
interface e= 0 are shown in Fig. 5.

0.2 0.4 0.6 0.8 1.0
R-'

Fig. 3. Dependence of the order of stress singularity i. on l( and R(R :;;. I) for the traction-traction
boundary condition.
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Fig. 4. The angular distribution of stresses tsz and t" of the asymptotic behavior as r .... 0 for the
traction-traction boundary condition.

Case II. Traction-disp/acement boundary condition
Here the problem of traction prescribed on one crack face with displacement prescribed

on the other is solved. The continuity conditions ofstress and displacement along the interface
are the same as that expressed in traction-traction boundary condition. Thus we consider
the following boundary conditions on the crack faces,

w*(r, -IX) = W*(r),

't'9z(r, 2n -IX) = t'(r). (25)

The solutions presented follow the outline established previously. Here we only con­
centrate our attention on the order of stress singularity. The characteristic equation which
determines the order of stress singularity is

D(IX, R; s) = (I +R) sin2 (sn) +(R-I) sin (sn) sin [s(n-21X)] - R
2
: I = O. (26)

R=2.0 8=0
0

1.5r----------,

III

=:
=:..-\I)

-O.S
1:1ll=30°

-1.0 2 : III =4 SO

-1.SL---------....
no as 1.6 2It 3,2 4.0

r

Fig. 5. Stresses tth and T" along the interface 9 = 0 for R = 2.0 and IX = 30°,45°.
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Fig. 6. Dependence of the order of stress singularity A on Ct. and R(R" I) for the traction­
displacement boundary condition.

For the case of interfacial crack, the order of stress singularity will be

1 1
A. = - + - tan - I !Ji.. for C( = 0,2 n V 1:\

For the case of a crack perpendicular to the interface (C( = nI2), we have

(27)

(28)

If the two materials are the same (R = 1), then we have the familiar value of A. equals
to 3/4. For both cases of R -.. 0 and R -.. 00, we all have A. -.. 1 which is the largest value of
A. and hence the most severe stress singularity. The results of the numerical calculations for
the general cases of the order of stress singularity are shown in Figs 6 and 7. Furthermore,
(26) does not change by interchanging R by I/R and IX by n-C( and Figs 6 and 7 also show
this feature.

Fig. 7. Dependence of the order of stress singularity A on Ct. and R(R'" 1) for the traction­
displacement boundary condition.
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Case III. Disp/acement-disp/acement boundary condition
We consider displacements prescribed at the crack faces (J = 21t-ex and (J = -ex of the

form,

w*(r, -ex) = W*(r),

w'(r, 21t-ex) = W'(r).

The characteristic equation will be

D(ex,R;s) = (I+R) cos (s1t)+(R-I) cos [s(2ex-1t)] =0.

(29)

(30)

Equation (30) has exactly the s~e form as (24) for the prescribed traction condition except
replacing R by 1/R.

4. STRESS SINGULARITIES FOR ANISOTROPIC MATERIAL

In this section, the problem for two dissimilar anisotropic materials containing an
inclined crack with angle lX, is formulated. The method employs the complex representation
of the antiplane anisotropic elasticity solution in conjunction with a generalization of the
Mellin transform. Attention is also focused on the dependence of the order of the power
singularities in the stress field at the crack angle and material constants. If the plane of
elastic symmetry is assumed to be normal to the z-axis, then there are only three relevant
coefficients C44, C4S and Css to be considered. The stress components are related to the
displacement as follows

(31)

(32)

The corresponding displacement equation of equilibrium is

The governing eqn (33) can be solved in the complex plane z = x+py such that

w(x,y) = 2Re[U(z)],

(33)

(34)

where U is an arbitrary function ofz and p is a value dependent on the elasticity constants.
Substitution of (34) into (33) yields p which must satisfy the following equation

(35)

hence
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(36)

so that the shear stresses may be written simply as

r.,z = - (pcP +p<p).

where overline denotes complex conjugate. Consider the stress transformation

1'8z = 1'yz cos (}-rxz sin (),

(37)

(38)

(39)

(40)

The solution of the problem is obtained by the use of the integral transform which is
a complex analogy of the standard Mellin transform. Let U(s) be defined by

U(s) = f" U(z)z,-t dz = (cos ()+p sin ())' L"' U(z)r'- I dr, (41)

in which the path of integration is along a ray of fixed () and s is a complex transform
parameter. We obtain also from the conjugate of (41)

roc rx

U(s) = Jo O(i)z,-I dZ = (cos (}+p sin ())' Jo O(z)rS
-

1 dr.

From a formal integration by parts and with appropriately assumed behavior as r ~ 0 and
00, we have

100 sUes)u' z r' dr = - .,
o ( ) (cos (}+p SIn (})'+ I

r" - d sO(s)Jo U'(i)r' r = - (cos ()+p sin (})'+ I .

(42)

(43)

If the integral operation is applied to (34) and (39) and use is made of (41)-(43) there
follows

in which

. . [sues) Sues)]
1'8z(S, (}) = -zC H«(}) - B«(}) ,

A O(s) U(s)
w(s, (}) = H«(}) + B«(}) ,

c= [C44CSS-(C4s)2jI2,

H«(}) = (cos (}+P sin (})'.

(44)

(45)

(46)

In the same definition as the isotropic case, !8z(s,8) is the Mellin transform with



Problems in composite materials with a crack 1397

respect to , of ,to:(', 0). The traction prescribed boundary conditions as shown in (16) in
conjunction with (44) and (45) yield for the determination of the six unknowns O(s), O*(s),
etc. for the following inhomogeneous system of six equations,

c*O*-c*V*-cO+CV = 0,

O*+V*-O-V= 0,

0* V* ;*(s)
H( -a.) - H( -a.) = -iC*s'

0' V' ;'(s)
H(2n-a.) H(2n-a.) = -iC*s'

C'[~~) -~~J-C[H~) -H~)J=O,
0' V' 0 V

H(n) + H(n) - H(n) - H(n) = 0. (47)

This system can be solved and the expressions for Toz(S, 0), w(s, 0) now follow directly from
substituting the solution of (47) into (44) and (45). This completes the formal solution for
the transforms of the stress and displacement components. As discussed in the isotropic
material case in the previous section, the dependence of the order of the stress field singu­
larity on crack angle a. and material parameters is determined by the pole ofthe meromorphic
function T/Jz(S, 0), etc. or the location of the zero of the following characteristic equation

where

(l-Q) cos (2e-n)s+(I+Q) CoSS1t = 0,

Q = JCt4C~S-(cts)2,

J C44CSS - (C4S)2

(48)

(49)

(50)

It is surprising that (48) has exactly the same functional form as (24) for the isotropic
case. Here eis called the effective angle that is defined in (50), Q is the ratio of two
anisotropic material constants and is defined in (49). This result shows that the problem of
solving the anisotropic bimaterial inclined crack can be simplified as the isotropic case. If
we rotate the inclined crack angle a. to effective angle e, and define the material parameter
C in (46) as the effective material constant which will be equivalent to shear modulus p. in the
isotropic case, then the anisotropic problem can be analyzed as the isotropic case. If the
effective angle eis defined, then the order of stress singularity for anisotropic bimaterial
inclined crack depends only on one material parameter, the ratio of two effective material
constants, instead of six anisotropic material constants. For the isotropic case, C4S = 0 and
C44 = CSS = p., we have Q = p.*/p. =Rand e= a., then (48) reduces to the isotropic case as
shown in (24). For the interfacial crack problem, a. = 0 (or 11:), we have the effective angle
, = 0 (or 'It) so that the interfacial crack in the general anisotropic material of antiplane
problem also gives rise to the square root singularity and is independent of the material
constants. Because the order of singularity in the present case shares the same feature as
that in the isotropic case, the discussion will not be repeated here. But it is worthy of
mentioning again that the order of the singularity for the anisotropic case is real and the
oscillatory singular behavior is not presented.
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The problem of traction prescribed on one face with displacement prescribed on the
other as shown in the boundary condition (25) can be analyzed in a similar way. The result
IS

(I +Q) sin 2 (sn)+(Q-I) sin sn sin [s(n-2~)] - 2
Q

I
= O.

Q+
(51)

Again, (51) has exactly the same functional form as (26) for Q and ~ defined in (49)-(50).
Finally, for the prescribed displacements at both boundary faces as indicated in (29),

the order of the stress singularity is obtained from solving the following equation

(I +Q) cos (sn) +(Q-I) cos [s(2~ -n)] = O. (52)

5. CONCLUDING REMARKS

The problem of antiplane shear for anisotropic dissimilar materials with crack ter­
minating at the interface was solved by a straightforward application of the Mellin
transform. Emphasis is placed on the investigation of the order of stress singularity and the
angular dependence in the stress field at the crack tip. It is shown in this paper that the
order of the stress singularity A. is always real for general anisotropic material for various
boundary conditions. This is a quite different character from the in-plane case in which ),
may be complex. If effective angle and material constant are introduced in the analysis for
the anisotropic case, then the characteristic equation which determines the order of stress
singularity, has the same functional form as that for isotropic case. These results may simplify
the analysis for the anisotropic problem. It is worthy to note that if the effective inclined
crack angle is defined, then the order of stress singularity depends only on one material
parameter instead of six material constants for the anisotropic bimaterial inclined crack
problem.

Explicit solutions of the order of stress singularity were obtained for some special
cases, interfacial crack (IX = 0 or n) and crack perpendicular to the interface problems
(IX = n/2). It shows that the familiar square root singularity is obtained for the dissimilar
anisotropic materials with crack in the interface of traction-traction and displacement­
displacement boundary conditions, while for traction-displacement boundary conditions,
the order of stress singularity ofdissimilar anisotropic materials with cracks in the interface
will depend on material constants. The result shows that the stress near the crack tip will
be more singular if the crack occurs in the high shear modulus material for traction-traction
boundary conditions and in the low shear modulus material for displacement-displacement
boundary conditions. For traction-traction boundary conditions, the crack tip ",ill be more
singular if a crack occurs in the interface for R < I, but for R > I, the crack tip will be
more singular if the crack is perpendicular to the interface.
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APPENDIX

From eqn (24)

we have

where

cos (.m)

cos (2ct-7r)s

cos (.m) = n cos (2ct-7r)s,

1-R
-1 "0=--" 1.l+R

(AI)

(A2)

Assume (A2) has the complex root of the forms = x+iyandx #: O,y #: 0, then (A2) can be rewritten as follows

cos (7rX) cosh (7ry)-i sin (nx) sinh (ny) = n cos (2ct-n)x cosh (2ct-n)y-iQ sin (2ct-7r)x sinh (2ct-n)y. (A3)

Equating the real and imaginary parts of (A3) yields

cos (nx) cosh (7rY) = n cos (2ct-n)x cosh (2ct-n)y,

sin (7rX) sinh (ny) = n sin (2ct-7r)x sinh (2ct-7r)Y.

(A4) and (A5) can be combined into the following equation

(A4)

(A5)
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Since 12:x -ltl < It, hence

and

c.-c. MA and B.-L. HOUR

2 {COSh (lty) }2 . 2 {sinh (lty )}2 2
cos (ltx) h (2 ) +sm (ltx) . h (2 ) = n .cos (I-lt y sm (I-lt y

{
cosh (lty) }2 I

cosh (2:x-n)y > ,

{
sinh (lty) }2

sinh (2(I-lt)y > I,

(A6)

which make the left-hand side of (A6) greater than I. But the right-hand side of (A6) is always less than I and
we have a contradiction. If x = 0, and y ~ 0, from (A3) we also get a contradictory result. Hence the only
possibility to find the solution of (A2) is x ~ 0, y = 0 which indicates that the order of stress singularity is real
and this completes the proof.


